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Abstract

A Bayes Monte Catlo approach is used to reduce uncertainty in source
characterization and building description for a transient pollutant release in a
residential house. Uncertainty distributions for input parameters were
subjectively assigned and updated using synthetically generated airborne
pollutant concentration data. Two hypothetical data collection scenarios were
considered: data collected in all five of the rooms every five minutes, and
data collected in one different room every five minutes. Uncertainty
estimations are updated sequentially at each five minute interval. Input
uncertainty in source characterization is significantly reduced in both
scenarios. Reduction in uncertainty is considerable when data is collected in
more than one room simultaneously. Location and characterization of the

pollutant release illustrates a typical application of this method.
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Introduction
Indoor air quality has received increasing attention in recent years. In response to rising

concern over energy usage, buildings are becoming more airtight, with ventilation accomplished
through mechanical HVAC systems (Sohn and Small 1999). A number of illnesses have been traced
to problems of indoor air pollution, including the use of chemicals without proper ventilation,
contaminant spills, and sick building syndrome. Many airborne contaminants may be colotless
gasses, invisible to the naked eye. As we are beginning to understand the complexities of airflow
inside buildings, we have learned that the transport of an airborne chemical released indoors may be
non-, or even counter-intuitive. Scientists have attempted to understand indoor airflow and pollutant
transport through computer modeling, using inputs of measurements for the building description
and source characterization and producing predictions for pollutant concentration in various rooms.

Traditional methods of modeling pollutant releases rely on data gathered that characterize
the source and building before modeling begins. It is, however, sometimes necessary to be able to
understand a pollutant release without having high quality data describing the source and the
building. We may have only remote data, occupant accounts, or pollutant concentration data. The
Bayes Monte Carlo (BMC) approach described here is a method of reducing uncertainty in source
characterization and building description in a small building using existing data, often of a limited
quantity and poor quality.

The Bayes Monte Carlo method has been demonstrated to significantly reduce uncertainty in
source characterization and transport parameters in other environmental media (see, eg, Sohn et al.
2000). The BMC method is different from most other methods of pollutant transport model
calibration. Traditionally, the model is first completed using all known data. If new measurements
are obtained, the calibration must be recalculated. This can be computationally intensive if
measurements continue to be made as the model is being refined. Additionally, considerable field

measurements may be required before modeling work is begun.
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The BMC approach is unique in that it allows for the systematic use of expert judgment
when limited data is available. As new data is obtained, the influence of expert judgment diminishes.
Because Bayesian data analysis is de-coupled from the model simulation, continued updating
alongside data gathering does not require running numerous additional simulations. Best estimates
of source characterization and building description can be continually generated as data comes in.
These features make it well suited for our purposes in this study.

The objective of this paper is to demonstrate that a BMC updating approach is useful and
valid for reducing uncertainty in source characterization and building description for an indoor
pollutant release in a small residential building. The study will also examine to what extent the
quantity and quality of field data improves our updated estimates. An application of this work is to
be able to locate and characterize the source in the indoor release of a pollutant, using scant or
unreliable field data. This information could be used to direct emergency response personnel in the
event of an accidental release.

Approach

Description of the Bayes Monte Carlo Method

The Bayes Monte Carlo method consists of two parts. In the Prior Analysis uncertainty
distributions are assigned to the building description and source characterization input parameters.
At this stage of the analysis, the model user allows the incorporation of subjective judgment when
limited input information is available. Many realizations of these distributions are sampled using a
standard Monte Catlo procedure.

In the Posterior Analysis field data are compared to the set of model predictions to assess
how well each prediction fits the data, estimated using a likelihood function. We assumed a gaussian

likelihood function:
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Where:
« O, 1s an observation for one zone at one time
Y, is the £” model output
« L(O,]Y,)is the likelihood of observing O, given model prediction Y,
* o is the measurement error
The total likelihood of a simulation is the sum of the likelihoods of each point prediction:
s
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where S is the number of measurements.
The Bayes Factor, a ratio of the simulation likelihood to the sum of all the simulation likelihoods,
describes how well a simulation fits the data, compared to all of the other simulations. This is

computed as:

o, = L(OlYk)p(Yk)
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Where:
«  p’ is the posterior probability of the £” simulation
«  p(Y,)is the prior probability of the £” simulation

» Uis the number of Monte Carlo simulations

The posterior probability (Bayes Factor) of each simulation is applied to each parameter associated

with that simulation, and thus a re-estimation is obtained for all input uncertainties. This includes



both model input parameters, conceptual models, and output predictions. The posterior mean,
variance and correlation coefficient are calculated for each input or output parameter and a weighted

estimate of the value of the parameter estimated. (Sohn et al 2000)
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Where:
* [7and W are any model input or output
* J'vand o\w are the standard deviations of the model inputs or outputs
Description of House Model
The study house is a five room, one story residential house with an approximate volume of
283 m> (Figure 1). Cracks exist in the ceiling of every room, connecting directly to the roof (there is
no attic). There is no HVAC system or duct work. The interior Living Room/Kitchen door, the
exterior Bathroom window and the exterior Bedroom 1 window are open. The interior Bedroom
2/Living Room door and an exterior Living Room window are randomly varied in the model

simulations. Wind blows at a steady 3 m/s perpendicular to one wall of the building.
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Figure 1: House Floor Plan

Our goal is to locate and characterize the source of a pollutant released in a small building
without high quality data describing the source and building. Pollutant transport modeling, however,
requires source characterization and building description parameters as inputs to produce pollutant
concentration data. We will assume this information to be uncertain and will use the BMC approach
to work backwards from pollutant concentration data and low quality building description and
source characterization data to reduce uncertainty in input parameters.

Modeling of building airflow and pollutant transport was predicted using the COMIS
infiltration model (Feustel et al. 1990). COMIS is a multizone model that assumes each of the rooms
behave as well-mixed zones. The COMIS air flow calculation is based on calculating pressure
differentials between zones (rooms) through orifices.

Uncertainty Characterization

As discussed eatlier, uncertainty distributions were assigned to model input parameters.
Table 1 summarizes each of the uncertain input parameters and their assigned uncertainty
distribution. Five hundred model predictions were simulated from these distributions. Figure 2
shows an example model prediction for a source released in the living room. Summary statistics of

the set of 500 model predictions were calculated. Figure 3 illustrates the median and the two-sided



90% confidence interval from the 500 simulations. The wide interval demonstrates the large

uncertainty due to the uncertain source characterization and building description.

Table 1: Input parameters examined in this study and assigned distributions.

Parameter Distribution Uncertainty Characterization
Source Location Random Rooms 1,2,3,4,5

Source Mass Uniform 5-100 grams

Source Duration Uniform 5 - 20 minutes

External Temperature Uniform 10 - 25°C

Bedroom 2 Interior Door Random Open/Closed

One Living Room Window | Random Open/Closed

Concentration (g/m°)

57 g of pollutant released in Living Room over 17 minute
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Figure 2: Example of a model prediction of pollutant concentration data.
The concentrations in the bathroom are nearly zero, so are not visible on the figure.
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Figure 3: 90% Confidence Bounds for Living Room after 500 simulations

Generation of Synthetic Data

For the Bayes Updating, field data used in this paper was synthetically generated. We chose a
simulation using 57 grams of a pollutant released in the Living Room for 17 minutes, with an
external temperature of 12.7 °C and both living room window and Bedroom 2 door closed.
Hypothetical error was applied to the model simulation by assuming (i.) a normally distributed error
associated with a fixed Coefficient of Variation of .10 and (ii.) a normally distributed random error
that is independent of the magnitude of the measurement (U = 0, Orapgom = .01 g/ mS). Figure 4

illustrates the synthetic data at five minute intervals.
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Figure 4: Synthetic Data
Results

Two data gathering scenarios were considered. In the first scenario, we wished to learn if we
could locate where the source was released if we had data obtained in each of the five rooms every
five minutes. The BMC updating was conducted sequentially as the synthetic data is "obtained".
Hence, the first data is obtained at t = 5 minutes and our uncertainty is updated. At t = 10 minutes,
when the next sequential data is obtained, new updated uncertainty is estimated. Table 2 summarizes
the updated results. Note in Table 2 that uncertainty in input parameters as characterized by
standard deviation decreases to at most .1 after 30 measurements are taken. Figure 5 shows the
reduction of uncertainty in the source location. Even with just the measurements taken at five
minutes, we are able to locate the source in the living room with a probability of 100%. Figure 6,
comparing prior to posterior confidence bounds for the Living Room, illustrates the narrowing of

the 90% confidence interval at each measurement.
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Table 2: Posterior Parameter Uncertainties, after updating using data collected in all rooms, every five minutes. Reduction in uncertainty is
reduced, illustrated by decreasing standard deviation (0). Updated parameter estimations approach correct values.

Source Source External _iving Room Bedroom 2
Mass Duration Temperature  Window Door
(grams) (minutes) (degrees C) probability probability
U o H g H o
Prior:
53 275 13 44 | 175 4.3 |open= 50% open = 50%
closed =50%  [closed = 50%
Posterior:
5 minutes open: O open: O
(5 measurements total, 47 7.8 | 14 15 | 13.2 3.0 [closed =100% [closed = 100%
one in each room.)
10 minutes open: O open: O
(10 measurements total, 46 42 | 14 0.6 | 118 2.1 [closed =100% [closed = 100%
one in each room.)
15 minutes open: O open: O
(15 measurements total, 50 2.3 | 15 0.5 | 13.0 2.0 [closed =100% [closed =100%
one in each room.)
20 minutes open: O open: O
(20 measurements total, 51 0.4 | 15 0.4 | 12.8 1.1 [closed =100% |[closed = 100%
one in each room.)
25 minutes open: O open: O
(25 measurements total, 51 0.2 | 15 0.1 | 133 0.3 [losed =100% [closed = 100%
one in each room.)
30 minutes open: O open: O
(30 measurements total, 51 0.1 | 15 0.0 | 13.3 0.1 [closed =100% [closed = 100%
one in each room.)
Correct Answer \5 79 17 min 12.7° closed closed
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Figure 5: Scenario 1, reduction in uncertainty for source location. Note that after only 5
measurements, at t = 5 minutes, the source has been located in the Living Room.
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Figure 7: Scenario 1, Prior and Posterior Confidence Bounds for Living Room. The posterior 90%
confidence interval narrows as data is received. Concentrations for the Prior .05 bound are near 0.
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In the second scenario, we considered data taken in a single room every five minutes. A
different room is sampled every five minutes. Uncertainty is significantly reduced at the end of 30
minutes, though only 6 measurements have been used. Yet even after one measurement, the
posterior probability of the source being located in the living room is 65%. Table 3 summarizes the
results. Figures 7 and 8 illustrate the reduction of uncertainty in the source location and the
narrowing of the 90% confidence interval at each measurement, respectively.

Both cases approach the correct values for pollutant mass, duration of release, location,
external temperature, and window and door status. In both scenarios the simulation from which the

synthetic data was produced is summarized in Tables 2 and 3 as the "correct answer".
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Table 3: Posterior Parameter Uncertainties, after updating using data collected in one room every five minutes. Uncertainty is
reduced more slowly than Scenario 1. Updated parameter estimations approach correct values.

Source Source External Living Room Bedroom 2
Mass (grams) |Duration (min) [Temperature (°C) [Window Door
u g H (o) H ag probability probability
Prior: 53.0, 275 13.0 4.4 17.5 4.3 lopen= 50% lopen= 50%
closed = 50% |[closed = 50%

Posterior:

5 minutes 65 21.2 12 3.9 17.1 4.4 lopen= 44% pen= 64%
(1 measurement total, closed = 55% [closed = 36%
latest in Living Room.

10 minutes
(2 measurements total, | 54 19.3 12 4.2 16.9 4.6 lopen= 44% ppen= 52%
latest in Kitchen. closed= 56% |[closed = 48%

15 minutes
(3 measurements total, | 50 16.0 11 3.9 16.4 4.8 lopen= 35% open= 51%
latest in Bedroom 1. closed= 65% [closed = 49%

20 minutes
(4 measurements total, | 45 12.0 12 3.8 16.0 4.6 lopen= 32% ppen= 57%
latest in Bathroom. closed= 68% |[closed = 43%

25 minutes
(5 measurements total, | 43 9.2 12 3.0 13.8 45 lopen= 42% ppen= 10%
latest in Bedroom 2. closed= 58% |closed = 90%

30 minutes
(6 measurements total, | 50 2.9 15 0.5 13.6 1.9 lopen= O open= 0
latest in Living Room closed= 100% [closed = 100%
Correct Answer \ 57¢g | 17 min | 12.7° \ closed \ closed
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Figure 7: Scenario 2, reduction in uncertainty for source location. Note that reduction of
uncertainty in location is slower with data taken in only one room every 5 minutes.
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Figure 8: Scenario 2, Prior and Posterior Confidence Bounds for Living Room. The 90%
confidence interval narrows more slowly than in Scenario 1. Note that measurements in other rooms
are being obtained at 10, 15, 20, 25 minutes. Concentrations for the Prior .05 bound are near 0.
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Discussion and Conclusions

After final updating of input parameters, input uncertainty is significantly reduced, even with
sparse data (Scenario Two). Reduction in uncertainty is considerable when data is collected in more
than one room simultaneously (Scenario One). In both scenarios input parameter distributions are
narrowed to the parameter values of the model prediction which most closely matches the
simulation from which the synthetic data was produced.

Further research will be required to consider a larger set of uncertain parameters, including
additional elements of building description, and to understand how measurement error could effect
our updating. Additional research could also include applying the approach using field data from an
actual pollutant release in a building.
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